
1

Why study Boolean Algebra? 4

It is highly desirable to find the simplest circuit
implementation with the smallest number of gates or
wires.

We can use Boolean minimization process to reduce a
Boolean function (expression) to its simplest form: The
result is an expression with the fewest literals and thus
less wires in the final gate implementation.

Boolean Algebra

§ George Boole (1815-1864), a mathematician
introduced a systematic treatment of logic.

§ He developed a consistent set of postulates that
were sufficient to define a new type of algebra:
Boolean Algebra (similar to Linear Algebra)

§ Many of the rules are the same as the ones in
Linear Algebra.

Boolean Algebra (continued)

2

• There are 6 fundamental laws, or axioms, used
to formulate various algebraic structures:

1. Closure: Boolean algebra operates over a field of
numbers, B = {0,1}:
For every x, y in B:

§ x + y is in B
§ x . y is in B (1,0)

(1,0)
(1,0)

(1,0)
(1,0)
(1,0)

Laws of Boolean Algebra

2. Commutative laws: For every x, y in B,
§ x + y = y + x
§ x . y = y . x

x

y
F = x + y

y

x
F = y + x

x

y
F = x.y

y

x
F = y.x

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

3

3. Associative laws: For every x, y, z in B,
§ (x + y) + z = x + (y + z) = x + y + z
§ (xy)z = x(yz) = xyz

z

x
y

F = xyz

z
y

x
F = xyz

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

4. Distributive laws: For every x, y, z in B,

• x + (y.z) = (x + y)(x + z) [+ is distributive over .]

• x.(y + z) = (x.y) + (x.z) [. is distributive over +]

» Similar to Linear Algebra

» NOT Similar to Linear Algebra

Laws of Boolean Algebra (continued)

4

5. Identity laws:
§ A set B is said to have an identity element with
respect to a binary operation {.} on B if there exists an
element designated by 1 in B with the property: 1 . x

= x Example: AND operation

§ A set B is said to have an identity element with respect
to a binary operation {+} on B if there exists an element
designated by 0 in B with the property: 0 + x = x

Example: OR operation

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

6. Complement

For each x in B, there exists an element x’ in B (the
complement of x) such that:

• x + x’ = 1
• x . x’ = 0

We can also use x to represent complement.

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

5

Commutative
x + y = y + x xy = yx
Associative
(x + y) + z = x + (y + z)
(xy)z = x(yz)
Distributive
x + (yz) = (x + y)(x + z)
x(y + z) = (xy) + (xz)

Identity

x + 0 = x x . 1 = x
Complement

x + x = 1 x . x = 0

OR with 1 AND with 0

x + 1 = 1 x . 0 = 0

Laws of Boolean Algebra (Summary)

§ Theorem 1(a):
x + x = x

x
x

xxxx
xxxx

xxxx
xxx

0

'
)')((

1 .)(

=
+=

+=
++=

+=+
=+

§ Theorem 1(b):
x . x = x

x

x
xxx

xxxx

xxxx
xxx

1 .
)'(

'

0 .
 .

=
=

+=
+=

+=
=

Other Theorems

6

§ Theorem 2(a):

1
'

1'.

)1)('(
)1.(1 1

11

=
+=
+=

++=
+=+

=+

xx

xxx

xxx
xx

x
§ Theorem 2(b):

x
x

yx
yxxyx

xxyx

=
=

+=
+=+

=+

1.

)1(
)1(

Other Theorems (continued)

)'('' yxyx +=⋅

x
y

x
y

)'('' yxyx ⋅=+

x
y

x
y

x
y

NAND

x
y

NOR

Gate Equivalency and DeMorgan’s Law

7

Q: Why is Gate Equivalency useful?

A: It allows us to build functions using only one
gate type.

Q: Why are digital circuits constructed with
NAND/NOR rather than with AND/OR?

A: NAND and NOR gates are smaller, faster, and
easier to fabricate with electronic components. They
are the basic gates used in all IC digital logic.

Digital Logic Q’s & A’s

x

z

Vdd

gnd

y

z = x y.

1

2

3 4

x or y: ‘low’
transistor 1 or 2 is OFF
transistor 3 or 4 is ON

z = ‘high’

x and y: ‘high’
transistor 1 and 2 are ON
transistor 3 and 4 are OFF

z = ‘low’

CL

Digital IC’s – Transistor Level

8

z

Vdd

y

z = a + b

Vdd

y
x

z z = (x+y) z.

x

Digital IC’s (continued)

Example 1: zyxF '1 +=

x

y
z

F1

Implementation of Boolean Functions

9

Example 2: ''''1 xyyzxzyxF ++=

x

y

z
F1

Implementation of Boolean Functions

§ Try another implementation using a simplified F2:

''
')1('

')'('

''''2

xyzx
xyzx

xyyyzx

xyyzxzyxF

+=
+=

++=

++=

x
y F2

z

What are the advantages of this implementation?

This implementation has fewer gates and fewer inputs to
the gates (or wires) than the previous one.

Implementation of Boolean Functions

10

§ Simplify the following Boolean function to a minimum
number of terms: yzzxxyF ++= '3

x
y F3

z

Simplifying Boolean Functions

zxxy

yzxzxy
yzxxyzzxxy

xxyzzxxy

yzzxxyF

'

)1(')1(
''

)'('

'3

+=
+++=

+++=
+++=

++=

More on complements (DeMorgan)

EDCABF ++= ')'(
§ Find the complement of: § Show that the complement of ')(xyxx =+

')1('
)'1('

'''
)'(')]'([

xx
yx

yxx
yxxyxx

==
+=

+=
++=+

''')'(
']')''[(

']'')''[(
']'')'([
]'')'[('

DEECBA
EDCAB

EDCAB
EDCAB
EDCABF

++=
+=

++=
+=

++=

11

§ Draw the logic diagram for the following function: F = (a.b)+(b.c)

a
b

c

F

Implementation of Boolean Functions

§ Using ONLY NAND gates, draw a schematic for the following
function: F = (a.b)+(b.c)

]')'.)'.(.[(

]')]'.().[[()''(

cbba

cbbaF

=

+=

a
b

c

F

Implementation of Boolean Functions

12

§ Using only OR and NOT gates, draw a schematic for the
following function: zyyxxyF ''' ++=

)''()'()'''(
)]'').().(''[(

]')'')'.('')'.([(
)')''''(()''(

zyyxyx
zyyxyx

zyyxxy
zyyxxyF

+++++=
+++=

=
++=

x

y

F

z

Implementation of Boolean Functions

n binary variables can be combined to form 2n terms (AND terms),
called minterms (SOP).

In a similar fashion, n binary variables can be combined to form
2n terms (OR terms), called maxterms (POS).

* Note that each maxterm is the complement of its corresponding
minterm and vice versa.

Ø MINTERMS AND MAXTERMS:

Minterms and Maxterms

13

x y z
0 0 0 x’y’z’ mo x+y+z Mo
0 0 1 x’y’z m1 x+y+z’ M1

0 1 0 x’yz’ m2 x+y’+z M2
0 1 1 x’yz m3 x+y’+z’ M3
1 0 0 xy’z’ m4 x’+y+z M4
1 0 1 xy’z m5 x’+y+z’ M5

1 1 0 xyz’ m6 x’+y’+z M6

1 1 1 xyz m7 x’+y’+z’ M7

minterms Maxterms

Table 2-3:
Minterms and Maxterms for Three Binary Variables

Minterms and Maxterms (continued)

x y z F1 F2
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

§ Given the truth table, express F1 in sum of minterms

765411)7,6,5,4,1(),,(mmmmmzyxF ++++=∑=

)()'()'()''()''(xyzxyzzxyzxyzyx ++++=
§ Find F2

Σminterms and Πmaxterms

14

§ Repeat for product of maxterms.

3201)3,2,0(),,(MMMzyxF ⋅⋅=∏=

)'')(')((zyxzyxzyx ++++++=

x y z F1 F2
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Σminterms and Πmaxterms

Express the Boolean function zyxF '+= in a sum of
minterms, and then in a product of Maxterms.

Product of maxterms (POS)?

)7,6,5,4,1(),,(
''''''),,(

''')'(''
''')'(''

')'(
')'(

76541 ∑=++++=
++++=

+=+=
+=+=

+=+=
+=+=

mmmmmzyxF
xyzxyzzxyzxyzyxzyxF

zyxzxyxxzyzy
zxyzxyzzxyxy

xyzxyzzzxyxy
xyxyyyxx

Adding all terms and excluding recurring terms:

(SOP)

Σminterms and Πmaxterms

320)3,2,0(MMM ⋅⋅=∏

15

3-input exclusive-OR (XOR) logic gate:

Fx
y
z

x
F

z
y

ZYXF ⊕⊕=

1111

0011

0101

1001

0110

1010

1100

0000

FZYX

XOR Logic gate

